Properties of Logarithms

1. Plan

Objectives

1 To use the properties of logarithms

Examples

1 Identifying the Properties of Logarithms
2 Simplifying Logarithms
3 Expanding Logarithms
4 Real-World Connection

Math Background

Many students want to believe that $\log _{b}(M+N)=\log _{b} M+$ $\log _{b} N$. However, this would be equivalent to adding the exponents in expressions such as $x^{2}+x^{3}$, which cannot be done. Thus, it is reasonable that there is no property for the logarithm of a sum. Do not confuse this with the valid property for a logarithm of a product, $\log _{b}(M N)=\log _{b} M+\log _{b} N$.

More Math Background: p. 428C

Lesson Planning and Resources

See p. 428E for a list of the resources that support this lesson.

Powerpoint
 Bell Ringer Practice

Check Skills You'll Need

For intervention, direct students to:

Logarithmic Functions as Inverses

Lesson 8-3: Example 3
Extra Skills and Word Problems Practice, Ch. 8

Algebraic Expressions

Lesson 1-2: Examples 1, 2
Extra Skills and Word
Problems Practice, Ch. 1

What You'll Learn

- To use the properties of logarithms

... And Why

To relate sound intensity and decibel level, as in Example 4

Check Skills You'll Need

Simplify each expression.

1. $\log _{2} 4+\log _{2} 85$ 2. $\log _{3} 9-\log _{3} 27-1 \quad$ 3. $\log _{2} 16 \div \log _{2} 64$

Evaluate each expression for $\boldsymbol{x}=3$.
4. $x^{3}-x \quad 24$
5. $x^{5} \cdot x^{2} 2187$
6. $\frac{x^{6}}{x^{9}} \frac{1}{27}$
7. $x^{3}+x^{2} 36$

Using the Properties of Logarithms

1. $0,0.301,0.477,0.602$, $0.699,0.778,0.845$, $0.903,0.954,1,1.176$, 1.301
2. The sum of the logarithms equals the log of the product.

Activity: Properties of Logarithms

1. Complete the table. Round to the nearest thousandth.

x	1	2	3	4	5	6	7	8	9	10	15	20
$\log x$	\square		\square	\square	\square	\square						

2. Complete each pair of statements. What do you notice? See left.
a. $\log 3+\log 5=\square$ and $\log (3 \cdot 5)=\square \quad 1.176,1.176$
b. $\log 1+\log 7=\square$ and $\log (1 \cdot 7)=\square \quad 0.845,0.845$
c. $\log 2+\log 4=\square$ and $\log (2 \cdot 4)=\square \quad 0.903,0.903$
d. $\log 10+\log 2=\square$ and $\log (10 \cdot 2)=\square$ 1.301, 1.301
3. Complete the statement: $\log M+\log N=\square . \log (M N)$
4. a. Make a Conjecture How could you rewrite the expression $\log \frac{M}{N}$ using the expressions $\log M$ and $\log N ? \log \frac{M}{N}=\log M-\log N$
b. Use your calculator to verify your conjecture for several values of M and N. Check students' work.

The properties of logarithms are summarized below.

Key Concepts

Properties Properties of Logarithms

For any positive numbers, M, N, and $b, b \neq 1$,

$$
\begin{array}{ll}
\log _{b} M N=\log _{b} M+\log _{b} N & \text { Product Property } \\
\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N & \text { Quotient Property } \\
\log _{b} M^{x}=x \log _{b} M & \text { Power Property }
\end{array}
$$

Dliferentiated Instruction Solutions for All Learners

Special Needs L1

Students who wear hearing aids, or who have difficulty hearing, may be sensitive about a discussion of noise levels and decibels. However, if these students are comfortable with the topic, invite them to contribute some of their special knowledge.
learning style: verbal

Below Level 12

Have students state the Properties of Logarithms in words. Give illustrations using those words. Discuss whether these agree with the Property chosen.

Exailple Identifying the Properties of Logarithms

State the property or properties used to rewrite each expression.
a. $\log _{2} 8-\log _{2} 4=\log _{2} 2$

Quotient Property: $\log _{2} 8-\log _{2} 4=\log _{2} \frac{8}{4}=\log _{2} 2$
b. $\log _{b} x^{3} y=3 \log _{b} x+\log _{b} y$

Product Property: $\log _{b} x^{3} y=\log _{b} x^{3}+\log _{b} y$
Power Property: $\log _{b} x^{3}+\log _{b} y=3 \log _{b} x+\log _{b} y$
Quick Check
State the property or properties used to rewrite each expression.
a. $\log _{5} 2+\log _{5} 6=\log _{5} 12$ Product Property
b. $3 \log _{b} 4-3 \log _{b} 2=\log _{b} 8$ Power Property, Quotient Property

You can write the sum or difference of logarithms with the same base as a single logarithm.

2 EXADMPLE Simplifying Logarithms

Video Tutor Help Visit: PHSchool.com Web Code: age-0775

Write each logarithmic expression as a single logarithm.
a. $\log _{3} 20-\log _{3} 4$

$$
\begin{aligned}
\log _{3} 20-\log _{3} 4 & =\log _{3} \frac{20}{4} \\
& =\log _{3} 5 \quad \text { Quotient Property } \\
& \text { Simplify. }
\end{aligned}
$$

b. $3 \log _{2} x+\log _{2} y$
$3 \log _{2} x+\log _{2} y=\log _{2} x^{3}+\log _{2} y \quad$ Power Property
$=\log _{2}\left(x^{3} y\right) \quad$ Product Property
So $\log _{3} 20-\log _{3} 4=\log _{3} 5$, and $3 \log _{2} x+\log _{2} y=\log _{2}\left(x^{3} y\right)$.
a. Write $3 \log 2+\log 4-\log 16$ as a single logarithm. $\log 2$
b. Critical Thinking Can you write $3 \log _{2} 9-\log _{6} 9$ as a single logarithm? Explain. No; they do not have the same base.

You can sometimes write a single logarithm as a sum or difference of two or more logarithms.

2. Teach

Guided Instruction

Activity

Teaching Tip

Remind students that a logarithm is an exponent. Therefore, it seems reasonable that there are properties for operations with logarithms that are similar to the properties for operations with exponents.

Exanple Math Tip

Point out to students that the bases are the same within each expression in part (a) and within each expression in part (b). The properties for logarithms do not apply unless the bases are the same.

Additional Examples

State the property or properties used to rewrite each expression.
a. $\log 6=\log 2+\log 3$

Product Property
b. $\log _{b} \frac{x^{2}}{y}=2 \log _{b} x-\log _{b} y$

Quotient Property and Power Property

2 Write each expression as a single logarithm.
a. $\log _{4} 64-\log _{4} 16 \log _{4} 4$ or 1
b. $6 \log _{5} x+\log _{5} y \log _{5}\left(x^{6} y\right)$

(3) EXANPLE Expanding Logarithms

Vocabulary Tip

In mathematics, to expand means "to show the full form of."

Expand each logarithm.
a. $\log _{5} \frac{x}{y}$
b. $\log 3 r^{4}$
$=\log _{5} x-\log _{5} y \quad$ Quotient Property

$$
\begin{array}{ll}
=\log 3+\log r^{4} & \text { Product Property } \\
=\log 3+4 \log r & \text { Power Property }
\end{array}
$$

Quick Check
Expand each logarithm. See above left.
a. $\log _{2} 7 b$
b. $\log \left(\frac{y}{3}\right)^{2}$
c. $\log _{7} a^{3} b^{4}$

Lesson 8-4 Properties of Logarithms

Advanced Learners L4

Ask students to explain how the properties of Logarithms on page 454 are similar to and how they are different from the properties of exponents.
learning style: verbal

English Language Learners ELL

Emphasize the correct reading of a logarithmic expression. For $\log _{b} 2$, students should say "log base b of 2." Also, clarify that the term log by itself is meaningless. You cannot say $y=\log$ just as you cannot say $y=\sqrt{ }$.
learning style: verbal

Discuss with students the fact that writing their exponents and bases clearly will help them avoid errors. It is easy to misread and confuse these smaller digits so that $\log _{5} \frac{x}{y}$ might be misread as $\log 5\left(\frac{x}{y}\right)$.

Additional Examples

Expand each logarithma. $\log _{7} \frac{t}{u} \log _{7} t-\log _{7} u$
b. $\log 4 p^{3} \log 4+3 \log p$Manufacturers of a vacuum cleaner want to reduce its sound intensity to 40\% of the original intensity. By how many decibels would the loudness be reduced? about four decibels.

Resources

- Daily Notetaking Guide 8-4 L3
- Daily Notetaking Guide 8-4Adapted Instruction

Closure

Ask students to write a paragraph describing how to use one logarithm property to simplify logarithm expressions. You may wish to assign properties so that all three are covered.

Logarithms are used to model sound. The intensity of a sound is a measure of the energy carried by the sound wave. The greater the intensity of a sound, the louder it seems. This apparent loudness L is measured in decibels.
You can use the formula $L=10 \log \frac{I}{I}$, where I is the intensity of the sound in watts per square meter $\left(\mathrm{W} / \mathrm{m}^{2}\right) . I_{0}$ is the lowest-intensity sound that the average human ear can detect.

4 EXANPLE Real-World Connection

Real-World Connection
The workers who direct planes at airports must wear ear protection.
4. about 6 decibels

Noise Control A shipping company has started flying cargo planes out of the city airport. Residents in a nearby neighborhood have complained that the cargo planes are too loud. Suppose the shipping company hires you to design a way to reduce the intensity of the sound by half. By how many decibels would the loudness of the sound be decreased?

Relate The reduced intensity is one half of the present intensity.
Define Let $I_{1}=$ present intensity.
Let $I_{2}=$ reduced intensity.
Let $L_{1}=$ present loudness. Let $L_{2}=$ reduced loudness.
Write $I_{2}=0.5 I_{1}$
$L_{1}=10 \log \frac{I_{1}}{I_{0}}$
$L_{2}=10 \log \frac{I_{2}}{I_{0}}$
$L_{1}-L_{2}=10 \log \frac{I_{1}}{I_{0}}-10 \log \frac{I_{2}}{I_{0}} \quad$ Find the decrease in loudness $L_{1}-L_{2}$.
$=10 \log \frac{I_{1}}{I_{0}}-10 \log \frac{0.5 I_{1}}{I_{0}} \quad$ Substitute $I_{2}=0.5 I_{1}$.
$=10 \log \frac{I_{1}}{I_{0}}-10 \log \left(0.5 \cdot \frac{I_{1}}{I_{0}}\right)$
$=10 \log \frac{I_{1}}{I_{0}}-10\left(\log 0.5+\log \frac{I_{1}}{I_{0}}\right) \quad$ Product Property
$=10 \log \frac{I_{1}}{I_{0}}-10 \log 0.5-10 \log \frac{I_{1}}{I_{0}} \quad$ Distributive Property
$=-10 \log 0.5 \quad$ Combine like terms.
≈ 3.0
Use a calculator.
The decrease in loudness would be about three decibels.
Quick Check
Suppose the shipping company wants you to reduce the sound intensity to 25% of the original intensity. By how many decibels would the loudness be reduced?

1. Product Property
2. Quotient Property
3. Power Property
4. Power Property
5. Power Property, Quotient Property
6. Power Property
7. Power Property, Quotient Property
8. Power Property, Product Property
9. Power Property, Quotient Property
10. Power Property, Product Property

Practice by Example
Example 1
(page 455)
for Help
1-10. See margin p. 456.

Example 2
(page 455)

Example 3 (page 455)

Example 4 (page 456)
42. The coefficient $\frac{1}{2}$ is missing in $\log _{4} s$; $\log _{4} \sqrt{\frac{t}{s}}=\frac{1}{2} \log _{4} \frac{t}{s}=$ $\frac{1}{2}\left(\log _{4} t-\log _{4} s\right)=$ $\frac{1}{2} \log _{4} t-\frac{1}{2} \log _{4} s$.

State the property or properties used to rewrite each expression.

1. $\log 4+\log 5=\log 20$
2. $\log _{3} 32-\log _{3} 8=\log _{3} 4$
3. $\log z^{2}=2 \log z$
4. $\log _{6} \sqrt[n]{x^{p}}=\frac{p}{n} \log _{6} x$
5. $8 \log 2-2 \log 8=\log 4$
6. $\log \sqrt[3]{3 x}=\frac{1}{3} \log 3 x$
7. $3 \log _{4} 5-3 \log _{4} 3=\log _{4}\left(\frac{5}{3}\right)^{3}$
8. $2 \log w+4 \log z=\log w^{2} z^{4}$
9. $2 \log _{2} m-4 \log _{2} n=\log _{2} \frac{m^{2}}{n^{4}}$
10. $\log _{b} \frac{1}{8}+3 \log _{b} 4=\log _{b} 8$

Write each logarithmic expression as a single logarithm.

11. $\log 7+\log 2 \log 14$
12. $\log _{2} 9-\log _{2} 3-\log _{2} 3$
13. $5 \log 3+\log 4 \log 972$
14. $\log 8-2 \log 6+\log 3 \log \frac{2}{3}$
15. $4 \log m-\log n \log \frac{m^{4}}{n}$
16. $\log 5-k \log 2 \log \frac{5}{2^{k}}$
17. $\log _{6} 5+\log _{6} x \log _{6} 5 x$
18. $\log _{7} x+\log _{7} y-\log _{7} z \log _{7} \frac{x y}{z}$

Expand each logarithm. 19-30. See margin.
19. $\log x^{3} y^{5}$
20. $\log _{7} 22 x y z$
21. $\log _{4} 5 \sqrt{x}$
22. $\log 3 m^{4} n^{-2}$
23. $\log _{5} \frac{r}{s}$
24. $\log _{3}(2 x)^{2}$
25. $\log _{3} 7(2 x-3)^{2}$
26. $\log \frac{a^{2} b^{3}}{c^{4}}$
27. $\log \sqrt{\frac{2 x}{y}}$
28. $\log _{8} 8 \sqrt{3 a^{5}}$
29. $\log \frac{s \sqrt{7}}{t^{2}}$
30. $\log _{b} \frac{1}{x}$
31. One brand of ear plugs claims to block the sound of snoring as loud as 22 dB . A second brand claims to block snoring that is eight times as intense. If the claims are true, for how many more decibels is the second brand effective? 9 dB
32. A sound barrier along a highway reduced the intensity of the noise reaching a community by 95%. By how many decibels was the noise reduced? 13 dB

Use the properties of logarithms to evaluate each expression.
33. $\log _{2} 4-\log _{2} 16-2$
34. $3 \log _{2} 2-\log _{2} 41$
35. $\log _{3} 3+5 \log _{3} 36$
36. $\log 1+\log 1002$
37. $\log _{6} 4+\log _{6} 92$
38. $2 \log _{8} 4-\frac{1}{3} \log _{8} 81$
39. $2 \log _{3} 3-\log _{3} 31$
40. $\frac{1}{2} \log _{5} 1-2 \log _{5} 5-2$
41. $\log _{9} \frac{1}{3}+3 \log _{9} 31$
42. Error Analysis Explain why the expansion below of $\log _{4} \sqrt{\frac{t}{s}}$ is incorrect. Then do the expansion correctly. See left.

$$
\begin{aligned}
\log _{4} \sqrt{\frac{t}{s}} & =\frac{1}{2} \log _{4} \frac{t}{s} \\
& =\frac{1}{2} \log _{4} t-\log _{4} s
\end{aligned}
$$

43. Open-Ended Write $\log 150$ as a sum or difference of two logarithms.

Answers may vary. Sample: $\log 150=\log 15+\log 10$.

3. Practice

Assignment Guide

1 A B 1-87	
C Challenge	$88-90$
Test Prep	$91-95$
Mixed Review	$96-108$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 25, 32, 56, 57, 72, 75.

Diversity

Exercise 32 Some students may not know what a sound barrier along a highway looks like. Ask students to bring pictures, draw a sketch, or tell where one can be seen nearby. Discuss the fact that highway sound barriers are often built to prevent highway noise from affecting neighborhoods.

19. $3 \log x+5 \log y$
20. $\log _{7} 22+\log _{7} x+$ $\log _{7} y+\log _{7} z$
21. $\log _{4} 5+\frac{1}{2} \log _{4} x$
22. $\log 3+4 \log m-2 \log n$

$$
\begin{array}{ll}
\text { 23. } \log _{5} r-\log _{5} s & \text { 27. } \frac{1}{2} \log 2+\frac{1}{2} \log x-\frac{1}{2} \log y \\
\text { 24. } 2 \log _{3} 2+2 \log _{3} x & \text { 28. } 1+\frac{1}{2} \log _{8} 3+\frac{5}{2} \log _{8} a \\
\text { 25. } \log _{3} 7+2 \log (2 x-3) & \text { 29. } \log s+\frac{1}{2} \log 7-2 \log t \\
\text { 26. } 2 \log a+3 \log b-4 \log c & \text { 30. }-\log _{b} x
\end{array}
$$

4. Assess \& Reteach

Lesson Quiz

Write each expression as a single logarithm. State the property you used.

1. $\log 12-\log 3 \log 4 ;$ Quotient Property
2. $3 \log _{11} 5+\log _{11} 7$ $\log _{11}\left(5^{3} \cdot 7\right)$; Power Property and Product Property

Expand each logarithm.
3. $\log _{c} \frac{a}{b} \log _{c} a-\log _{c} b$
4. $\log _{3} x^{4} 4 \log _{3} x$

Use the properties of logarithms to evaluate
each expression.
5. $\log 0.001+\log 100-1$
6. $\frac{1}{2} \log _{y} y \frac{1}{2}$

Alternative Assessment

Have students work in small groups to prepare an informal proof of an expanded logarithm from Exercises 79-87. They should justify each step, using the Properties of Logarithms. Then ask each group to present their proof at the board, and encourage class discussion of the proof.
58. True; $\log _{2} 4=2$ and $\log _{2} 8=3$.
59. False; $\frac{1}{2} \log _{3} 3=\log _{3} 3^{\frac{1}{2}}$, not $\log _{3} \frac{3}{2}$.
60. True; it is an example of the Power Property since $8=2^{3}$.
61. False; the two logs have different bases.

Real-World Connection
Decibel meters are used to measure sound levels.
71. No; the expression $(2 x+1)$ is a sum, so it is not covered by the Product, Quotient, or Power properties.
73. $\log _{3} \sqrt[4]{2 x}$
74. $\log _{x} \frac{2 \sqrt{y}}{z^{3}}$
75. $\log \frac{27}{2}$
76. $\log _{4} \frac{m^{x} n^{\frac{1}{y}}}{p}$
77. $\log _{b} \frac{\sqrt[3]{x^{2}} \sqrt[4]{y^{3}}}{z^{5}}$
78. $\log \frac{\sqrt[4]{z}}{\sqrt[4]{3} \sqrt{x^{5}}}$

GO nline Homework Help
Visit: PHSchool.com Web Code: age-0804

Assume that $\log 4 \approx 0.6021, \log 5 \approx 0.6990$, and $\log 6 \approx 0.7782$. Use the properties of logarithms to evaluate each expression. Do not use your calculator.
44. $\log 241.3803$
45. $\log 30$
1.4772
46. $\log 161.2042$
47. $\log 1252.097$
48. $\log 1.5 \quad 0.1761$
49. $\log 0.8-0.0969$
50. $\log \frac{1}{4}-0.6021$
51. $\log \frac{1}{25}-1.398$
52. $\log 251.398$
53. $\log \frac{1}{6}-0.7782$
54. $\log 361.5564$
55. $\log \sqrt{5} 0.3495$
56. Noise Control New components reduce the sound intensity of a certain model

GPS of vacuum cleaner from $10^{-4} \mathrm{~W} / \mathrm{m}^{2}$ to $6.31 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$. By how many decibels do these new components reduce the vacuum cleaner's loudness?

12 dB
57. Reasoning If $\log x=5$, what is the value of $\frac{1}{x}$? 0.00001

Write true or false for each statement. Justify your answer. 58-67. See margin.
58. $\log _{2} 4+\log _{2} 8=5$
59. $\log _{3} \frac{3}{2}=\frac{1}{2} \log _{3} 3$
60. $\log _{3} 8=3 \log _{3} 2$
61. $\log _{5} 16-\log 2=\log _{5} 8$
62. $\log (x-2)=\frac{\log x}{\log 2}$
63. $\frac{\log _{b} x}{\log _{b} y}=\log _{b} \frac{x}{y}$
64. $(\log x)^{2}=\log x^{2}$
65. $\log _{4} 7-\log _{4} 3=\log _{4} 4$
66. $\log x+\log \left(x^{2}+2\right)=\log \left(x^{3}+2 x\right)$
67. $\log _{2} 3+\log _{3} 2=\log _{6} 6$
68. $\log _{2} x-4 \log _{2} y=\log _{2} \frac{x}{y^{4}}$
69. $\log _{b} \frac{1}{8}+3 \log _{b} 4=\log _{b} 8$
68-69. See margin p. 459.
70. Construction Suppose you are the supervisor on a road construction job. Your team is blasting rock to make way for a roadbed. One explosion has an intensity of $1.65 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{2}$. What is the loudness of the sound in decibels? (Use $I_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2}$.) 102 dB
71. Critical Thinking Can you expand $\log _{3}(2 x+1)$? Explain.
72. Writing Explain why $\log (5 \cdot 2) \neq \log 5 \cdot \log 2$. See margin p. 459.

Write each logarithmic expression as a single logarithm. 73-78. See left.
73. $\frac{1}{4} \log _{3} 2+\frac{1}{4} \log _{3} x$
74. $\frac{1}{2}\left(\log _{x} 4+\log _{x} y\right)-3 \log _{x} z$
75. $2 \log 3-\frac{1}{2} \log 4+\frac{1}{2} \log 9$
76. $x \log _{4} m+\frac{1}{y} \log _{4} n-\log _{4} p$
77. $\left(\frac{2 \log _{b} x}{3}+\frac{3 \log _{b} y}{4}\right)-5 \log _{b} z$
78. $\frac{\log z-\log 3}{4}-5 \frac{\log x}{2}$

Expand each logarithm. 79-87. See back of book.
79. $\log \left(\frac{2 \sqrt{x}}{5}\right)^{3}$
80. $\log \frac{m^{3}}{n^{4} p^{-2}}$
81. $\log 2 \sqrt{\frac{4 r}{s^{2}}}$
82. $\log _{b} \frac{\sqrt{x} \sqrt[3]{y^{2}}}{\sqrt[5]{z^{2}}}$
83. $\log _{4} \frac{\sqrt{x^{5} y^{7}}}{z w^{4}}$
84. $\log \frac{\sqrt{x^{2}-4}}{(x+3)^{2}}$
85. $\log \sqrt{\frac{x \sqrt{2}}{y^{2}}}$
86. $\log _{3}\left[(x y)^{\frac{1}{3}} \div z^{2}\right]^{3}$
87. $\log _{7} \frac{\sqrt{r+9}}{s^{2} t^{\frac{1}{3}}}$
62. False; this is not an example of the Quotient Property. $\log (x-2) \neq$ $\log x-\log 2$.
63. False; $\log _{b} \frac{x}{y}=\log _{b} x-$ $\log _{b} y$.
64. False; the exponent on the left means $\log x$, quantity squared, not the \log of x^{2}.
65. False; $\log _{4} 7-\log _{4} 3=$ $\log _{4} \frac{7}{3}$, not $\log _{4} 4$.
66. True; $\log x+\log \left(x^{2}+2\right)$ $=\log x\left(x^{2}+2\right)$, which equals $\log \left(x^{3}+2 x\right)$.
67. False; the three logs have different bases.
88. Let $u=\log _{b} M$, and let $v=\log _{b} N$. Prove the Product Property of Logarithms by completing the equations below.

$$
\text { 88. } \begin{array}{ll}
v=\log _{b} N \\
& b^{v}=N \\
M N=b^{u} \cdot b^{v}= \\
& b^{u+v} \\
\log _{b} M N=u+v \\
\log _{b} M N=\log _{b} M \\
+\log _{b} N
\end{array}
$$

Statement	Reason
$u=\log _{b} M$	Given
$b^{u}=M$	Rewrite in exponential form.
$v=\square$	Given
$b^{v}=\square$	Rewrite in exponential form.
$M N=b^{u} b^{v}=b^{\square}$	Apply the Product Property of Exponents.
$\log _{b} M N=\square$	Take the logarithm of each side.
$\log _{b} M N=\log _{b} \square+\log _{b} \square$	Substitute $\log _{b} M$ for u and $\log _{b} N$ for v.
. Let $u=\log _{b} M$. Prove the Power Property of logarithms. See margin.	
Let $u=\log _{b} M$ and $v=\log _{b}$	ove the Quotient Property of logarithms. See margin.

Test Prep

Multiple Choice

Short Response

1. Which statement is NOT correct? B
A. $\log _{2} 25=2 \cdot \log _{2} 5$
B. $\log _{3} 16=2 \cdot \log _{3} 8$
C. $\log _{5} 27=3 \cdot \log _{5} 3$
D. $\log _{8} 10,000=4 \cdot \log _{8} 10$
2. Which expression is equal to $\log _{7} 5+\log _{7} 3$? G
F. $\log _{7} 8$
G. $\log _{7} 15$
H. $\log _{7} 125$
J. $\log _{49} 15$
3. Which expression is equal to $\log _{5} x+4 \cdot \log _{5} y-2 \cdot \log _{5} z$? D
A. $\log _{5}(-8 x y z)$
B. $-\log _{5} \frac{4 x y}{2 z}$
C. $\log _{5} \frac{(x y)^{4}}{z^{2}}$
D. $\log _{5} \frac{x y^{4}}{z^{2}}$
4. $\log _{5} 10 \approx 1.4307$ and $\log _{5} 20 \approx 1.8614$. Find the value of $\log _{5}\left(\frac{1}{2}\right)$ without using a calculator. Explain how you found the value. See margin.
Extended Response
5. Use the properties of logarithms to write log 12 in four different ways. Name each property you use.

See back of book.

Mixed Review

Lesson 8-3
Write each equation in logarithmic form.
See margin.

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 483
- Test-Taking Strategies, p. 478
- Test-Taking Strategies with Transparencies

89. 90. $u=\log _{b} M$ (given)
1. $b^{u}=M^{b}$ (Rewrite in exponential form.)
2. $\left(b^{u}\right)^{x}=M^{x}$ (Raise each side to x power.)
3. $\boldsymbol{b}^{u x}=M^{X}$ (Power Property of exponents)
4. $\log _{b} b^{u x}=\log _{b} M^{x}$ (Take the log of each side.)
5. $u x=\log _{b} M^{x}$ (Simplify.)
6. $\log _{b} M^{x}=x \cdot \log _{b} M$ (substitution)
7. 8. $u=\log _{b} M$ (given)
1. $b^{u}=M$ (Rewrite in exponential form.)
2. $v=\log _{b} N$ (given)
3. $b^{V}=N$ (Rewrite in exponential form.)
4. $\frac{M}{N}=\frac{b^{u}}{b^{v}}=b^{u-v}$ (Quotient Property of Exponents)
5. $\log _{b} \frac{M}{N}=\log _{b} b^{u-v}$ (Take the log of each side.)
6. $\log _{b} \frac{M}{N}=u-v$ (Simplify.)
7. $\log _{b} \frac{M}{N}=\log _{b} M-$ $\log _{b} N$ (substitution)
8. [2] By the Quotient

Property, $\log _{5}\left(\frac{1}{2}\right)=$ $\log _{5}\left(\frac{10}{20}\right) \approx 1.4307$ -
$1.8614=-0.4307$.
[1] correct answer, without work shown

Exponential and Logarithmic Equations

What You'll Learn

- To solve exponential equations
- To solve logarithmic equations
... And Why
To model animal populations, as in Example 5

Check Skills You'll Need

Evaluate each logarithm.

1. $\log _{9} 81 \cdot \log _{9} 31$
2. Simplify $125^{-\frac{2}{3}} \cdot \frac{1}{25}$

New Vocabulary - exponential equation - Change of Base Formula - logarithmic equation
for Help Lessons $8-3$ and $7-4$
3. $\log _{2} 16 \div \log _{2} 8 \frac{4}{3}$
2. $\log 10 \cdot \log _{3} 92$

Solving Exponential Equations

An equation of the form $b^{c x}=a$, where the exponent includes a variable, is an exponential equation. If m and n are positive and $m=n$, then $\log m=\log n$. You can therefore solve an exponential equation by taking the logarithm of each side of the equation.

1) $\boldsymbol{3}$ abdple Solving an Exponential Equation

Solve $7^{3 x}=20$.
$7^{3 x}=20$
$\log 7^{3 x}=\log 20 \quad$ Take the common logarithm of each side.
$3 x \log 7=\log 20 \quad$ Use the power property of logarithms.
$x=\frac{\log 20}{3 \log 7} \quad$ Divide each side by $3 \log 7$.
≈ 0.5132 Use a calculator.
Check $\quad 7^{3 x}=20$
$\quad 7^{3(0.5132)} \approx 20.00382 \approx 20 \quad \checkmark$

Solve each equation. Round to the nearest ten-thousandth. Check your answers. $\begin{array}{lll}\text { a. } 3^{x}=41.2619 & \text { b. } 6^{2 x}=210.8496 & \text { c. } 3^{x+4}=1010.2009\end{array}$

2 EXAMPLE Solving an Exponential Equation by Graphing
Solve $6^{2 x}=1500$.
Graph the equations $y_{1}=6^{2 x}$ and $y_{2}=1500$. Find the point of intersection.

The solution is $x \approx 2.0408$.

(2) Quick Check 2 Solve $11^{6 x}=786$ by graphing. 0.4634

Lesson 8-5 Exponential and Logarithmic Equations

Differentiated Instruction
 Solutions for All Learners

Special Needs L1

Clarify for students that the goal in solving an exponential equation is the same as for any equation, to isolate the variable on one side of the equal sign. However, because the variable is an exponent, students must take the logarithm of both sides.
learning style: verbal

Below Level L2

When solving an exponential equation by taking the logarithm of both sides, the Power Property of Logarithms is used to solve for the variable. Review the Power Property.

1. Plan

Objectives

1 To solve exponential equations
2 To solve logarithmic equations

Examples

1 Solving an Exponential Equation
2 Using the Change of Base Formula
3 Solving an Exponential Equation by Changing Bases
4 Solving an Exponential Equation by Graphing
5 Real-World Connection
6 Solving a Logarithmic Equation
7 Using Logarithmic Properties to Solve an Equation

Math Background

The Change of Base Formula allows you to rewrite any logarithm in terms of a logarithm to any desired base.

More Math Background: p. 428D

Lesson Planning and Resources

See p. 428E for a list of the resources that support this lesson.

Check Skills You'll Need

For intervention, direct students to:
Logarithmic Functions as Inverses
Lesson 8-3: Example 3
Extra Skills and Word
Problems Practice, Ch. 8

Rational Exponents

Lesson 7-4: Example 4
Extra Skills and Word Problems Practice, Ch. 7

2. Teach

Guided Instruction

Example Math Tip

Point out that you can take the common logarithm (using base 10) of both sides of the equation no matter what base occurs in the equation. This means that you can use the feature of a calculator that finds the common logarithm.

2 Example
 Error Prevention

When you enter $y=6^{2 x}$, be sure to use parentheses to enter it as $6^{\wedge}(2 x)$.

Example
 Connection to Biology

Although the mathematical model may indicate a population in the single digits, the reality of living creatures will not fit the mathematical model exactly. There is a minimum population level below which an endangered species will probably not be able to survive.

GO for Help

To review solving equations by tables, see Lesson 5-5.

3 Ex:ADPLE Solving an Exponential Equation by Tables
Solve the equation $2\left(1.5^{x}\right)=6$ to the nearest hundredth.

Enter $y_{1}=2\left(1.5^{x}\right)-6$. Use tabular zoom-in to find the sign change, as shown at the right.
The solution is $x \approx 2.71$.

- Quick Check
(3) Solve $11^{6 x}=786$ using tables. Compare your result with your solution in Quick Check 2. 0.4634

4 ExAMPLE Real-World Connection

Zoology Refer to the photo. Write an exponential equation to model the decline in the population. If the decay rate remains constant, in what year might only five peninsular bighorn sheep remain in the United States?

Step 1 Enter the data into your calculator. Let 0 represent the initial year, 1971
Step 2 Use the ExpReg feature to find the exponential function that fits the data.

```
ExpReg
y = a*b^x
    a = 1170
    b = .9563175045
```

Step 3 Graph the function and the line $y=5$.
Step 4 Find the point of intersection.

The solution is $x \approx 122$, and $1971+122=2093$, so there may be only
five peninsular bighorn sheep in 2093.
Quick Check

The U.S. population of peninsular bighorn sheep was 1170 in 1971. By 1999, only 335 remained.

The population of peninsular bighorn sheep in Mexico was approximately 6200 in 1971. By 1999, about 2300 remained. Determine the year by which only 200 peninsular bighorn sheep might remain in Mexico. 2068

Exanple Using the Change of Base Formula

Use the Change of Base Formula to evaluate $\log _{3} 15$. Then convert $\log _{3} 15$ to a logarithm in base 2.

$$
\begin{array}{rlrl}
\log _{3} 15 & =\frac{\log 15}{\log 3} & & \text { Use the Change of Base Formula. } \\
& \approx 2.4650 & & \text { Use a calculator. } \\
\log _{3} 15 & =\log _{2} x & & \text { Write an equation. } \\
2.4650 \approx \log _{2} x & & \text { Substitute } \log _{3} 15 \approx 2.4650 . \\
x & \approx 2^{2.4650} & & \text { Write in exponential form. } \\
& \approx 5.5212 & & \text { Use a calculator. }
\end{array}
$$

The expression $\log _{3} 15$ is approximately equal to 2.4650 , or $\log _{2} 5.5212$.
a. Evaluate $\log _{5} 400$ and convert it to a logarithm in base 8. $3.7227, \log _{8} 2301$
b. Critical Thinking Consider the equation $2.465 \approx \log _{2} x$ from Example 2. How could you solve the equation without using the Change of Base Formula? Answers may vary. Sample: Use a calculator to raise 2 to the 2.465 power.

An equation that includes a logarithmic expression, such as $\log _{3} 15=\log _{2} x$ in Example 5, is called a logarithmic equation.

6 ExANMPLE Solving a Logarithmic Equation

Solve $\log (3 x+1)=5$.
Method $1 \log (3 x+1)=5$

$$
\begin{array}{rlrl}
3 x+1 & =10^{5} & & \text { Write in exponential form. } \\
3 x+1 & =100,000 & & \\
x & =33,333 & \text { Solve for } x .
\end{array}
$$

Method 2 Graph the equations $y_{1}=\log (3 x+1)$ and $y_{2}=5$. Use Xmin $=30000, \mathrm{Xmax}=40000$,
$Y \min =4.9, Y \max =5.1$.
Find the point of intersection.
The solution is $x=33,333$.

Method 3 Enter $y_{1}=\log (3 x+1)-5$.
Use tabular zoom-in to find the sign change.
Use the information from Methods 1 or 2 to help you with your TblSet values.

The solution is $x=33,333$.

Check $\quad \log (3 x+1)=5$
$\log (3 \cdot 33,333+1) \stackrel{?}{=} 5$
$\log 100,000 \stackrel{?}{=} 5$
$\log 10^{5}=5 \checkmark$
Quick Check
Solve $\log (7-2 x)=-1$. Check your answer. 3.45

3．Practice

Assignment Guide
\boldsymbol{T} A B $\quad 1-24,48-54,58,60-63$,
$86,76-81,85,87,93,95,96$

A B $25-47,55-57,59,64$ ，
65，67－75，82－84，86， 88，92， 94

C Challenge	$97-105$
Test Prep	$106-112$

Mixed Review
113－127

Homework Quick Check

To check students＇understanding of key skills and concepts，go over Exercises 14，47，49，64，77， 87.

Assignment Guide

 89－91，93，95， 9697－105

GPS Guided Problem Solving	L3
Enrichment	L4
Reteaching	L2
Practice	L3
Practice 8.5	
止	
Smo	
\cdots	
＝	
20，	
边	
2mommememex	
， 3^{3}	
St．	
边	

Example 2 （page 461）

Real-World Connection
Careers Seismologists use models to determine the source, nature, and size of seismic events.

61a. Florida growth factor $=1.0213$, $y=15,982,378$. $(1.0213)^{X}$; New York growth factor $=1.0054$, $y=18,976,457$. $(1.0054)^{x}$
b. 2011

62a. Texas growth factor $=1.0208$, $y=20,851,820$. (1.0208) ${ }^{x}$; California growth factor $=1.013$, $y=33,871,648$. $(1.013)^{x}$

Solve each equation.

42. $\log x-\log 3=8 \quad 3 \times 10^{8}$
43. $2 \log x+\log 4=25$
44. $3 \log x-\log 6+\log 2.4=9$
$100,000 \sqrt{5}$, or about 223,606.8
45. $\log 2 x+\log x=11$
46. $\log 5-\log 2 x=1 \frac{1}{4}$
1357.2
47. $\log (7 x+1)=\log (x-2)+17$
48. Consider the equation $2^{\frac{x}{3}}=80$. a-c. See margin.
a. Solve the equation by taking the logarithm in base 10 of each side.
b. Solve the equation by taking the logarithm in base 2 of each side.
c. Writing Compare your result in parts (a) and (b). What are the advantages of either method? Explain.
49. Seismology An earthquake of magnitude 7.9 occurred in 2001 in Gujarat,
©PS India. It was 11,600 times as strong as the greatest earthquake ever to hit Pennsylvania. Find the magnitude of the Pennsylvania earthquake. (Hint: Refer to the Richter Scale on page 446.) 5.1

Write an equation. Then solve the equation without graphing.

50. A parent raises a child's allowance by 20% each year. If the allowance is $\$ 8$ now, when will it reach $\$ 20 ? 20=8(1.2)^{x}, 5$ years
51. Protactinium- $234 m$, a toxic radioactive metal with no known use, has a half-life of 1.17 minutes. How long does it take for a $10-\mathrm{mg}$ sample to decay to 2 mg ? See margin.
52. Multiple Choice As a town gets smaller, the population of its high school decreases by 12% each year. The student body has 125 students now. In how many years will it have about 75 students? A
(A) 4 years
(B) 7 years
(C) 10 years
(D) 11 years

Mental Math Solve each equation.

53. $2^{x}=\frac{1}{2}-1$
54. $3^{x}=273$
55. $\log _{9} 3=x \quad \frac{1}{2}$
56. $\log _{4} 64=x 3$
57. $\log _{8} 2=x \frac{1}{3}$
58. $10^{x}=\frac{1}{100}-2$
59. $\log _{7} 343=x 3$
60. $25^{x}=\frac{1}{5}-\frac{1}{2}$

Population Use this "Most Populous States" table for Exercises 61-63.

Most Populous States			
Rank in $\mathbf{2 0 0 0}$	State	$\mathbf{2 0 0 0}$ Population	Average Annual Percentage Increase Since 1990
1	California	$33,871,648$	1.30%
2	Texas	$20,851,820$	2.08%
3	New York	$18,976,457$	0.54%
4	Florida	$15,982,378$	2.13%

61. a. Determine the growth factors for Florida and New York. Then write an equation to model each state's population growth. a-b. See left.
b. Estimate when Florida's population might exceed New York's population.
62. a. Determine the growth factors for Texas and California. Then write an equation to model each state's population growth.

2063
b. Estimate when Texas's population might exceed California's population.
63. Critical Thinking Is it likely that Florida's population will exceed that of Texas? Explain your reasoning. See margin.

Lesson 8-5 Exponential and Logarithmic Equations

48a. 18.9658
b. 18.9658
c. Answers may vary.

Sample: You don't have to use the change of base formula with the base-10 method, but there are fewer steps with the base-2 method.

Exercise 52 Show students that they can simply multiply the initial population of 125 by the multiplier $1-0.12=0.88$, and determine the number of multiplications needed to get around 75. Alternatively, students can write an exponential equation that represents the situation and solve it.

Alternative Method

Exercise 53 Organize students in groups of 3 . Have each student in the group try a different method: making a table to show successive values, graphing, or solving without graphing. Then have them discuss the relative merits of each method.
63. Since Florida's growth rate is larger than Texas's growth rate, in theory, given constant conditions, Florida would exceed Texas in about 543 years. However, since no state has unlimited capacity for growth, it is unrealistic to predict over a long period of time.

Exercise 67 This exercise can make the Change of Base Formula seem less like an arbitrary rule, thereby making it easier to remember.

Auditory Learners

Exercise 97 Ask a volunteer to find a picture of piano strings (or actually take the class to see a piano if one is nearby) and discuss how the relative length of the strings relates to the pitch of each note on the keyboard. You could also use a guitar or a zither to demonstrate this.
65. Answers may vary. Sample: $\log x=1.6$ $10^{1.6}=x, x \approx 39.81$
66. Answers may vary. Sample: A possible model is $y=1465(1.0838)^{x}$ where $x=0$ represents 1991; the growth is probably exponential and 1465(1.0838) ${ }^{10} \approx 3276$; using this model, there will be 10,000 manatees in about 2015.
67a. $x=\frac{\log b}{\log a}$
b. $x=\log _{a} b=\frac{\log b}{\log a}$
c. Substituting the result from part (a) into the results from part (b), or vice versa, yields $\log _{a} b=\frac{\log b}{\log a}$. This justifies the Change of Base Formula for $c=10$.
77a. top up: $10^{-5} \mathrm{~W} / \mathrm{m}^{2}$, top down: $10^{-2.5} \mathrm{~W} / \mathrm{m}^{2}$
b. 99.68%
64. Error Analysis What is wrong with the "proof" below that $2=1$?

$$
2=\frac{2}{1}=\frac{\log 10^{2}}{\log 10^{1}}=\log 10^{2-1}=\log 10^{1}=1 \quad \frac{\log 10^{2}}{\log 10^{1}} \neq \log 10^{2-1}
$$

65. Open-Ended Write and solve a logarithmic equation. See margin.

Real-World Connection
Many Florida manatees die after collisions with motorboats.
75. $\frac{\log (x+1)}{\log x}$
nline Homework Help
Visit: PHSchool.com Web Code: age-0805
66. Zoology Conservation efforts have increased the endangered Florida manatee population from 1465 in 1991 to 3276 in 2001. If this growth rate continues, when might there be 10,000 manatees? Explain the reasoning behind your choice of a model. See margin.
67. Consider the equation $a^{x}=b$.
a. Solve the equation by using \log base 10 . a-c. See margin.
b. Solve the equation by using \log base a.
c. Use your results in parts (a) and (b) to justify the Change of Base Formula.

Write each logarithm as the quotient of two common logarithms. Do not simplify the quotient.
68. $\log _{7} 2 \frac{\log 2}{\log 7}$
69. $\log _{3} 8 \frac{\log 8}{\log 3}$
70. $\log _{5} 140 \frac{\log 140}{\log 5}$
71. $\log _{9} 3.3 \frac{\log 3.3}{\log 9}$
72. $\log _{4} 3 x \frac{\log 3 x}{\log 4}$
73. $\log _{6} \frac{\left(\begin{array}{l}1-x) \\ \log (1-x) \\ \log 6\end{array}\right.}{\text { (1) }}$
74. $\log _{x} 5 \frac{\log 5}{\log x}$
75. $\log _{x}(x+1)$
See left.

Acoustics In Exercises 76-78, the loudness measured in decibels (dB) is defined by loudness $=10 \log \frac{I}{I_{0}}$, where I is the intensity and $I_{0}=10^{-12} \mathbf{W} / \mathrm{m}^{2}$.
76. The human threshold for pain is 120 dB . Instant perforation of the eardrum occurs at 160 dB .
a. Find the intensity of each sound. 10^{0} (or 1) $\mathrm{W} / \mathrm{m}^{2}, 10^{4} \mathrm{~W} / \mathrm{m}^{2}$
b. How many times as intense is the noise that will perforate an eardrum as the noise that causes pain? 10,000 times as intense
77. The noise level inside a convertible driving along the freeway with its top up is 70 dB . With the top down, the noise level is 95 dB . a-b. See margin.
a. Find the intensity of the sound with the top up and with the top down.
b. By what percent does leaving the top up reduce the intensity of the sound?
78. A screaming child can reach 90 dB . A launch of the space shuttle produces sound of 180 dB at the launch pad.
a. Find the intensity of each sound. $10^{-3} \mathrm{~W} / \mathrm{m}^{2}, 10^{6} \mathrm{~W} / \mathrm{m}^{2}$
b. How many times as intense as the noise from a screaming child is the noise from a shuttle launch? 10^{9} times more intense

Solve each equation. If necessary, round to the nearest ten-thousandth.
79. $8^{x}=444 \quad 2.9315$
80. $14^{9 x}=146 \quad 0.2098$
81. $3^{7 x}=120 \quad 0.6225$
83. $4 \log _{3} 2-2 \log _{3} x=1 \quad 2.3094$
85. $9^{2 x}=42 \quad 0.8505$
82. $\frac{1}{2} \log x+\log 4=2 \quad 625$
84. $\log x^{2}=2 \quad 10$
86. $\log _{8}(2 x-1)=\frac{1}{3} \quad 1.5$
87. $1.3^{x}=7 \quad 7.4168$
88. $\log (5 x-4)=3 \quad 200.8$
89. $2.1^{x}=9 \quad 2.9615$
90. $12^{4-x}=20 \quad 2.7944$
91. $5^{3 x}=125 \quad 1$
92. $\log 4+2 \log x=6500$
93. $4^{3 x}=77.2 \quad 1.0451$
94. $\log _{7} 3 x=3 \quad 114 . \overline{3}$
95. $3^{x}+0.7=4.9 \quad 1.3063$
96. $7^{x}-1=371 \quad 3.0417$

Challenge
97a. bassoon, guitar, harp, violin, viola, cello
b. bassoon, guitar, harp, cello, bass
c. harp, violin
d. harp, violin
104. 20,031 m above sea level
105b. 0.928 mg or 1.061 mg
c. Estimate in hours is more accurate; the days have a larger rounding error.
97. Music The pitch, or frequency, of a piano note is related to its position on the keyboard by the function $F(n)=440 \cdot 2^{\frac{n}{12}}$, where F is the frequency of the sound wave in cycles per second and n is the number of piano keys above or below Concert A, as shown above. If $n=0$ at Concert A, which of the instruments shown in the diagram can sound notes of the given frequency?
a. 590
b. 120
c. 1440
d. 2093
98. Astronomy The brightness of an astronomical object is called its magnitude. A decrease of five magnitudes increases the brightness exactly 100 times. The sun is magnitude -26.7 , and the full moon is magnitude -12.5 . The sun is about how many times brighter than the moon? 478,630 times
99. Archaeology A scientist carbon-dates a piece of fossilized tree trunk that is thought to be over 5000 years old. The scientist determines that the sample contains 65% of the original amount of carbon-14. The half-life of carbon-14 is 5730 years. Is the reputed age of the tree correct? Explain. No; solving $0.65=(0.5)^{\frac{x}{5730}}$ for x, the age in years of the sample,
Solve each equation.
yields an age of about 3561 yr.
100. $\log _{7}(2 x-3)^{2}=2 \quad 5$
101. $\log _{2}\left(x^{2}+2 x\right)=3 \quad-4,2$
102. $\log _{4}\left(x^{2}-17\right)=3-9,9$
103. $\frac{3}{2} \log _{2} 4-\frac{1}{2} \log _{2} x=3 \quad 1$
104. In the formula $P=P_{0}\left(\frac{1}{2} \frac{h}{4795}, P\right.$ is the atmospheric pressure in millimeters of mercury at elevation h meters above sea level. P_{0} is the atmospheric pressure at sea level. If P_{0} equals 760 mm , at what elevation is the pressure 42 mm ?
105. Chemistry A technician found 12 mg of a radon isotope in a soil sample. After 24 hours, another measurement revealed 10 mg of the isotope.
a. Estimate the length of the isotope's half-life to the nearest hour and to the nearest day. 91 hours or 4 days
b. For each estimate, determine the amount of the isotope after two weeks.
c. Compare your answers to part (b). Which is more accurate? Explain.

4. Assess \& Reteach

Lesson Quiz

Use mental math to solve each equation.

1. $2^{x}=\frac{1}{8}-3$
2. $\log _{4} 2=x \frac{1}{2}$
3. $10^{6 x}=10$
4. Solve $5^{2 x}=125$. $\frac{3}{2}$

Alternative Assessment

Have a class discussion. Ask students to talk about which aspect of solving exponential and logarithmic equations they found most confusing or difficult, citing specific examples from the lesson. Have other students give tips and explanations to help clarify the topics. Be sure each student contributes to the discussion.

Test Prep

A sheet of blank grids is available in the Test-Taking Strategies with Transparencies booklet. Give this sheet to students for practice with filling in the grids.

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 483
- Test-Taking Strategies, p. 478
- Test-Taking Strategies with Transparencies

Test Prep

Gridded Response
Use a calculator to solve each equation. Enter each answer to the nearest hundredth.
106. $7^{2 x}=75$ 1.11 \quad 107. $11^{x-5}=2507.30 \quad$ 108. $1080=15^{3 x-4}$

$$
\text { 107. } 11^{x-5}=2507.30
$$

Checkpoint Quiz

Use this Checkpoint Quiz to check students' understanding of the skills and concepts of Lessons 8-3 through 8-5.

Resources

Grab \& Go

- Checkpoint Quiz 2

113. $\log 2+3 \log x-2 \log y$
114. $\log _{3} x-\log _{3} y$
115. $3 \log _{2} 3+3 \log _{2} x$
116. $\log _{3} 7+2 \log _{3}(2 x-3)$
117. $\log _{4} 5+\frac{1}{2} \log _{4} x$
118. $\log _{2} 5+\log _{2} a-$
$2 \log _{2} b$

Checkpoint Quiz

1.

2.

4. $2 \log _{6} 3+2 \log _{6} x+$ $2 \log _{6} y$
5. $\log _{6} 4+\frac{1}{2} \log _{6} x$
10. Rewrite $\log _{2} 10$ as $\frac{\log 10}{\log 2}$ and evaluate it to get ≈ 3.322. Then set 3.322 $=\log _{3} x$. Rewrite to get $3.322=\frac{\log x}{\log 3}$ and solve. Convert $\log x=1.585$ to $10^{1.585}=x$ or $x \approx 38.46$. So $\log _{2} 10 \approx \log _{3} 38.46$.

Use the Change of Base Formula to solve each equation. Enter the answer to the nearest tenth.
109. $\log _{5} x=\log _{3} 20 \quad 80.5$
110. $\log _{9} x=\log _{6} 15$
27.7

Solve each equation.
111. $\log (1+3 x)=3333$
112. $\log (x-3)=2103$

Mixed Review

Lesson 8-4 Expand each logarithm. 113-118. See margin.
113. $\log 2 x^{3} y^{-2}$
114. $\log _{3} \frac{x}{y}$
115. $\log _{2}(3 x)^{3}$
116. $\log _{3} 7(2 x-3)^{2}$
117. $\log _{4} 5 \sqrt{x}$
118. $\log _{2}\left(\frac{5 a}{b^{2}}\right)$

Lesson 7-6 Let $f(x)=3 x$ and $g(x)=x^{2}-1$. Perform each function operation.
119. $(f+g)(x)$
120. $(g-f)(x)$
121. $(f \cdot g)(x)$
$x^{2}-3 x-1$
$3 x^{3}-3 x$

Lesson 6-6 Find all the zeros of each function.
122. $y=x^{3}-x^{2}+x-11, \pm i$
123. $f(x)=x^{4}-16 \pm 2, \pm 2 i$
124. $f(x)=x^{4}-5 x^{2}+6 \pm \sqrt{2}, \pm \sqrt{3}$
125. $y=3 x^{3}-21 x-18-2,-1,3$

Lesson 1-3 Write an equation to solve each problem.

126. A customer at a hardware store mentions that he is buying fencing for a vegetable garden that is 12 ft longer than it is wide. He buys 128 ft of fencing. What is the width of the garden? $2(x)+2(x+12)=128 ; 26 \mathrm{ft}$
127. A bowler has an average of 133 . In a set of games one night, her scores are $135,127,119,142$, and 156 . What score must she bowl in the sixth game to maintain her average? $\frac{679+x}{6}=133 ; 119$

Graph each logarithmic function. 1-2. See margin.

1. $y=\log _{6} x$
2. $y=\log (x-2)$

Expand each logarithm. 4-5. See margin.
$\begin{array}{lll}\text { 3. } \log \frac{s^{3}}{r^{5}} 3 \log s-5 \log r & \text { 4. } \log _{6}(3 x y)^{2} & \text { 5. } \log _{6} 4 \sqrt{x}\end{array}$

Solve each equation.

9. $\log 2=0.3010$,
$\log _{3} 2=0.6309$,
$\log _{2} 3=1.5850$,
$2^{3}=8$,
$3^{2}=9$
10. $7-2^{x}=-1 \quad 3$
11. $\log 5 x=220$
12. $3 \log x=91000$
13. Evaluate the expressions below and order them from least to greatest. $2^{3} \quad \log _{2} 3 \quad \log _{3} 2 \quad 3^{2} \quad \log 2$
14. Writing Explain how to use the Change of Base Formula to rewrite $\log _{2} 10$ as a logarithmic expression with base 3.See margin.

1. Plan

Objectives

1 To evaluate natural logarithmic expressions
2 To solve equations using natural logarithms

Examples

1 Simplifying Natural Logarithms
2 Real-World Connection
3 Solving a Natural Logarithmic Equation
4 Solving an Exponential Equation
5 Real-World Connection

Math Background

Natural logarithms, or logarithms with base e, occur in many problems involving the growth and decay of natural organisms. In fact, natural logarithms arise in those problems which model continuous growth and decay as discussed in Lesson 8-2.

More Math Background: p. 428D

Lesson Planning and Resources

See p. 428E for a list of the resources that support this lesson.

Check Skills You'll Need
For intervention, direct students to:

Properties of

Exponential Functions

Lesson 8-2: Example 4
Extra Skills and Word Problems Practice, Ch. 8

Exponential and

Logarithmic Equations
Lesson 8-5: Example 6
Extra Skills and Word Problems Practice, Ch. 8

What You'll Learn

- To evaluate natural logarithmic expressions
- To solve equations using natural logarithms

... And Why

To model the velocity of a rocket, as in Example 2
(p)) New Vocabulary • natural logarithmic function
for Help Lessons 8-2 and 8-5
Check Skills You'll Need
Use your calculator to evaluate each expression to the nearest thousandth.
$\begin{array}{llll}\text { 1. } e^{5} & 148.413 & \text { 2. } 2 e^{3} & 40.171\end{array}$ 3. $e^{-2} 0.135$
4. $\frac{1}{e} 0.368$
5. $4.2 e$

Solve.
6. $\log _{3} x=481$
7. $\log _{16} 4=x \frac{1}{2}$
8. $\log _{16} x=4$
11.417

65,536

1 Natural Logarithms

In Lesson 8-2, you learned that the number $e \approx 2.71828$ can be used as a base for exponents. The function $y=e^{x}$ has an inverse, the natural logarithmic function.

Definition Natural Logarithmic Function

If $y=e^{x}$, then $\log _{e} y=x$, which is commonly written as $\ln y=x$.
The natural logarithmic function is the inverse, written as $y=\ln x$.

(1) $y=e^{x}$
(2) $y=\ln x$

Vocabulary Tip

$\ln y$ means "the natural logarithm of y." The I stands for "logarithm" and the n stands for "natural."

The properties of common logarithms apply to natural logarithms also.

EXADPLE Simplifying Natural Logarithms

Write $3 \ln 6-\ln 8$ as a single natural logarithm.
$3 \ln 6-\ln 8=\ln 6^{3}-\ln 8 \quad$ Power Property

$$
\begin{array}{ll}
=\ln \frac{6^{3}}{8} & \text { Quotient Property } \\
=\ln 27 & \text { Simplify }
\end{array}
$$

Quick Check 1 Write each expression as a single natural logarithm.

$$
\begin{array}{lll}
\text { a. } 5 \ln 2-\ln 4 \ln 8 & \text { b. } 3 \ln x+\ln y \ln x^{3} y & \text { c. } \frac{1}{4} \ln 3+\frac{1}{4} \ln x \ln \sqrt[4]{3 x}
\end{array}
$$

470
Chapter 8 Exponential and Logarithmic Functions

Differentiated Instruction Solutions for All Learners

Special Needs L1

In Example 4, students may fail to take the natural logarithm of both sides. Stress that if any logarithm is taken on one side of the equation, the same logarithm must be applied to the other side. Ask: Why was the natural logarithm used? base is e
learning style: verbal
\qquad

Below Level L2

Review the general formula for growth or decay, $N=N_{0} \mathrm{e}^{k t}$ and the formula for continuously compounded interest, $A=\mathrm{Pe}^{\text {rt }}$. Compare the meanings of corresponding variables.
learning style: verbal

Real-World Connection
The space shuttle is launched into orbit.

Natural logarithms are useful because they help express many relationships in the physical world.

2 EXANPLE Real-World Connection

Space A spacecraft can attain a stable orbit 300 km above Earth if it reaches a velocity of $7.7 \mathrm{~km} / \mathrm{s}$. The formula for a rocket's maximum velocity v in kilometers per second is $v=-0.0098 t+c \ln R$. The booster rocket fires for t seconds and the velocity of the exhaust is $c \mathrm{~km} / \mathrm{s}$. The ratio of the mass of the rocket filled with fuel to its mass without fuel is R. Suppose a rocket used to propel a spacecraft has a mass ratio of 25 , an exhaust velocity of $2.8 \mathrm{~km} / \mathrm{s}$, and a firing time of 100 s . Can the spacecraft attain a stable orbit 300 km above Earth?

Let $R=25, c=2.8$, and $t=100$. Find v.
$v=-0.0098 t+c \ln R \quad$ Use the formula.

$$
\begin{array}{ll}
=-0.0098(100)+2.8 \ln 25 & \\
\text { Substitute. } \\
\approx-0.98+2.8(3.219) & \\
\approx 8.0 & \text { Sse a calculator. } \\
\approx 8 \text { Simplify. }
\end{array}
$$

The maximum velocity of $8.0 \mathrm{~km} / \mathrm{s}$ is greater than the $7.7 \mathrm{~km} / \mathrm{s}$ needed for a stable orbit. Therefore, the spacecraft can attain a stable orbit 300 km above Earth. A booster rocket for a spacecraft has a mass ratio of about 15 , an exhaust velocity of $2.1 \mathrm{~km} / \mathrm{s}$, and a firing time of 30 s . Find the maximum velocity of the spacecraft. Can the spacecraft achieve a stable orbit 300 km above Earth?
b. Critical Thinking Suppose a rocket, as designed, cannot provide enough velocity to achieve a stable orbit. Look at the variables in the velocity formula. What alterations could be made to the rocket so that a stable orbit could be achieved? One could increase its mass ratio or its exhaust velocity.

Natural Logarithmic and Exponential Equations

You can use the properties of logarithms to solve natural logarithmic equations.

3) ExANPLE Solving a Natural Logarithmic Equation

Solve $\ln (3 x+5)^{2}=4$.
$\ln (3 x+5)^{2}=4$
$(3 x+5)^{2}=e^{4} \quad$ Rewrite in exponential form.
$(3 x+5)^{2} \approx 54.60$
Use a calculator.
$3 x+5 \approx \pm \sqrt{54.60}$
Take the square root of each side.
$3 x+5 \approx 7.39$ or -7.39
Use a calculator.
$x \approx 0.797$ or -4.130
Solve for x.
Check $\ln (3 \cdot 0.797+5)^{2} \stackrel{?}{\underline{?}} 4$

$$
\ln 54.6 \stackrel{?}{=} 4
$$

$$
\begin{aligned}
\ln (3 \cdot(-4.130)+5)^{2} & \stackrel{?}{=} 4 \\
\ln 54.6 & \stackrel{?}{=} 4 \\
4.000 & \approx 4 \checkmark
\end{aligned}
$$

Solve each equation. Check your answers.
a. $\ln x=0.11 .105$
b. $\ln (3 x-9)=21$
c. $\ln \left(\frac{x+2}{3}\right)=12$
488,262.4

Lesson 8-6 Natural Logarithms

Advanced Learners L4

Ask students to solve $3 \cdot 7^{2 x}+3=14$ by taking logs to the base 7 and using the change of base formula.
learning style: verbal

English Language Learners ELL

Help students make the connection between natural logarithms and the math term In. Discuss the pronunciation of In as the letters sound, or "ell n." Write $\ln x=\log _{e} x$ on the board and have students read it to emphasize the meaning of natural logarithms.
learning style: verbal

Guided Instruction

Exanjple Teaching Tip

Point out that the speed is in kilometers per second. To put this in more familiar units so students can get a sense of how fast the rocket is moving, suggest that they convert this speed to km/h or mi/h.

Write $2 \ln 12$ - $\ln 9$ as a single natural logarithm. In 16
(2) Find the velocity of a spacecraft whose booster rocket has a mass ratio of 22 , an exhaust velocity of $2.3 \mathrm{~km} / \mathrm{s}$, and a firing time of 50 s . Can the spacecraft achieve a stable orbit 300 km above Earth? about 6.6 km/s; no

Guided Instruction

척ㄹㄹ Error Prevention

Remind students that the parentheses in $\ln (3 x+5)$ are necessary in order to show that you are taking the natural logarithm of the entire binomial.
(3) Solve $\ln (2 x-4)^{3}=6$. about 5.695
(4) Use natural logarithms to solve $4 e^{3 x}+1.2=14$. about 0.388
(5) An initial investment of \$200 is now valued at $\$ 254.25$. The interest rate is 6\%, compounded continuously. How long has the money been invested? about 4 years

(4) ExANPLE Technology Tip

Have students check to see if their calculator has separate keys for LOG and LN.

Resources

- Daily Notetaking Guide 8-6 L3
- Daily Notetaking Guide 8-6Adapted Instruction

Closure

Ask students to compare and contrast natural and common logarithms. Answers may vary. Sample: They are both exponents; they both obey the same properties of exponents and logarithms; they use a different base. The base for common logarithms is the rational number 10; for natural logarithms, it is the irrational number e.

Exajple Solving an Exponential Equation

Use natural logarithms to solve $7 e^{2 x}+2.5=20$.
$7 e^{2 x}+2.5=20$

$$
\begin{aligned}
7 e^{2 x} & =17.5 & & \text { Subtract } 2.5 \text { from each side. } \\
e^{2 x} & =2.5 & & \text { Divide each side by } 7 . \\
\ln e^{2 x} & =\ln 2.5 & & \text { Take the natural logarithm of each side. } \\
2 x & =\ln 2.5 & & \text { Simplify. } \\
x & =\frac{\ln 2.5}{2} & & \text { Solve for } x . \\
x & \approx 0.458 & & \text { Use a calculator. }
\end{aligned}
$$

Quick Check (4) Use natural logarithms to solve each equation.
a. $e^{x+1}=302.401$
b. $e^{\frac{2 x}{5}}+7.2=9.11 .605$
(5) ExADPLE Real-World Connection

Multiple Choice An investment of $\$ 100$ is now valued at $\$ 149.18$. The interest rate is 8%, compounded continuously. About how long has the money been invested?
(A) 2 years
(B) 5 years
(C) 7 years
(D) 19 years

A	$=P e^{r t}$		Continuously compounded interest formula
149.18	$=100 e^{0.08 t}$		Substitute 149.18 for $A, 100$ for P, and 0.08 for r.
1.4918	$=e^{0.08 t}$		Divide each side by 100.
$\ln 1.4918$	$=\ln e^{0.08 t}$		Take the natural logarithm of each side.
$\ln 1.4918$	$=0.08 t$		Simplify.
$\frac{\ln 1.4918}{0.08}$	$=t$		Solve for t.
5	$\approx t$		Use a calculator.

The money has been invested for about five years. The answer is B.

An initial investment of $\$ 200$ is worth $\$ 315.24$ after seven years of continuous compounding. Find the interest rate. 6.5\%

EXERCISES
For more exercises, see Extra Skill and Word Problem Practice.

Practice and Problem Solving

Practice by Example
Write each expression as a single natural logarithm.
Example 1
(page 470)

for
Help

1. $3 \ln 5$ In 125
2. $\ln 9+\ln 2 \ln 18$
3. $\ln 24-\ln 6 \ln 4$
4. $4 \ln 8+\ln 10 \ln 40,9605 \cdot \ln 3-5 \ln 3 \ln \frac{1}{81}$
5. $2 \ln 8-3 \ln 4 \ln 1$
6. $5 \ln m-3 \ln n \ln \frac{m^{5}}{n^{3}}$
7. $\frac{1}{3}(\ln x+\ln y)-4 \ln z$
8. $\ln a-2 \ln b+\frac{1}{2} \ln c$

Find the value of \boldsymbol{y} for the given value of \boldsymbol{x}.
$\ln \frac{\sqrt[3]{x y}}{z^{4}}$
$\ln \frac{a \sqrt{c}}{b^{2}}$
Example 2
11. $y=0.05-10 \ln x$, for $x=0.09$
24.13

Chapter 8 Exponential and Logarithmic Functions

for Help

For Gridded Responses, see Test-Taking Strategies, page 46.

For Exercises 12 and 13, use $\boldsymbol{v}=\mathbf{- 0 . 0 0 9 8 t}+\boldsymbol{c} \ln \boldsymbol{R}$.

12. Space Find the velocity of a spacecraft whose booster rocket has a mass ratio of 20 , an exhaust velocity of $2.7 \mathrm{~km} / \mathrm{s}$, and a firing time of 30 s . Can the spacecraft achieve a stable orbit 300 km above Earth? $7.79 \mathrm{~km} / \mathrm{s}$; yes
13. A rocket has a mass ratio of 24 and an exhaust velocity of $2.5 \mathrm{~km} / \mathrm{s}$. Determine the minimum firing time for a stable orbit 300 km above Earth. 25 s

Example 3
17. $\ln (2 m+3)=8$
-3.482
0. $\ln \frac{x-1}{2}=4$
21. $\ln 4 r^{2}=3$
22. $2 \ln 2 x^{2} \stackrel{ \pm 11.588}{=}$ Use natural logarithms to solve each equation.
23. $e^{x}=182.890$
$e^{2 x}=101.151$
27. $e^{2 x}=121.242$
28. $e^{\frac{x}{9}}-8=623.752$ 8.4% interest, compounded continuously. Determine how long the money has been in the account. 6 years
. An investor sold 100 shares of stock valued at $\$ 34.50$ per share. The stock was compounded interest that would be necessary in a banking account for the investor to make the same profit. 78\%

Mental Math Simplify each expression.
31. $\ln e 1$
32. $\ln e^{2} 2$
33. $\ln e^{10} 10$
34. $10 \ln e 10$
35. $\ln 10$
36. $\frac{\ln e}{4} \frac{1}{4}$
37. $\frac{\ln e^{2}}{2} 1$
38. $\ln e^{83} 83$
39. Gridded Response The battery power available to run a satellite is given by the formula $P=50 e^{-\frac{t}{250}}$, where P is power in watts and t is time in days. For how many days can the satellite run if it requires 15 watts? 301
40. Space Use the formula for maximum velocity $v=-0.0098 t+c \ln R$. Find the GPS mass ratio of a rocket with an exhaust velocity of $3.1 \mathrm{~km} / \mathrm{s}$, a firing time of 50 s , and a maximum shuttle velocity of $6.9 \mathrm{~km} / \mathrm{s} .10 .8$

Determine whether each statement is always true, sometimes true, or never true.

41. $\ln e^{x}>1$ sometimes
42. $\ln e^{x}=\ln e^{x}+1$
43. $\ln t=\log _{e} t$ never
always

Biology For Exercises 44-46, use the formula $H=\left(\frac{1}{r}\right)(\ln P-\ln A) . H$ is the number of hours, r is the rate of decline, P is the initial bacteria population, and A is the reduced bacteria population.
about 5.8\% per hour
44. A scientist determines that an antibiotic reduces a population of 20,000 bacteria to 5000 in 24 hours. Find the rate of decline caused by the antibiotic.
45. A laboratory assistant tests an antibiotic that causes a rate of decline of 0.14. How long should it take for a population of 8000 bacteria to shrink to 500 ?
about 19.8 h
46. A scientist spilled coffee on the lab report shown at the left. Determine the initial population of the bacteria. about 40,000 bacteria

3. Practice

Assignment Guide

1 А в 1-13, 31-38
A B 14-30, 39-62

C Challenge	$63-66$
Test Prep	$67-70$
Mixed Review	$71-80$

Homework Quick Check

To check students' understanding of key skills and concepts, go over Exercises 8, 18, 30, 39, 44, 56.

Alternative Method

Exercises 31-38 Suggest that students ask themselves the question in a different form. For example, for Exercise 32 ask: What power of the base e gives me the number e^{2} ?

4. Assess \& Reteach

Lesson Quiz

1. Write $4 \ln 6-2 \ln 3$ as a single natural logarithm.
In 144
2. Solve $e^{3 x}=15$. about 0.903
3. Simplify $\ln e^{7}$. 7

Alternative Assessment

Ask students to discuss with a partner the differences in the procedures and answers for solving these two equations: $\ln x-\ln (x-1)=2$ and $\log x-\log (x-1)=2$.
Then have each pair write a paragraph that summarizes their discussion. The procedures are the same. If b is the base for the logarithm, then the answer for both equations is $b^{2} \div\left(b^{2}-1\right)$. However, for the first equation, $b=e$ and for the second equation, $b=10$. The answers are about 1.157 and about 1.010.
63. No; using the Change of Base Formula would result in one of the log expressions being written as a quotient of logs, which couldn't then be combined with the other expression to form a single logarithm.
64d. $t=\frac{\ln \left(\frac{y}{300}\right)}{0.241}$, where y is the number of Internet users in millions and t is time in years.
e. Substitute the number of users found in (b) and (c) into the equation in (d). Determine whether your answers in years are the same as t for each.
nline
Homework Help
Visit: PHSchool.com Web Code: age-0808
58. 81.286
59. 1.2639
60. no solution

C Challenge
Savings Suppose you invest $\$ 500$ at 5% interest compounded continuously. Copy and complete the table to find how long it will take to reach each amount.

	Amount (A)	Time (years)	
47.	\$600	-	47. 3.6
48.	\$700	\square	48. 6.7
49.	\$800	\square	49. 9.4
50.	\$900	\square	50. 11.8
51.	\$1000	\square	51. 13.9
52.	\$1100	\square	52. 15.8
53.	\$1200	\square	53. 17.5
54.	\$1300	-	54. 19.1

Solve each equation.
542.31
$\ln 3=3$
56. $\ln (2 x-1)=01$
57. $4 e^{x+2}=32 \quad 0.0794$
55. $\ln x-3 \ln 3=3$
59. $2 e^{3 x-2}+4=16$
60. $2 e^{x-2}=e^{x}+7$
58. $\ln (5 x-3)^{\frac{1}{3}}=2$
61. $\frac{1}{3} \ln x+\ln 2-\ln 3=327,347.9$
62. $\ln (x+2)-\ln 4=378.342$
63. Critical Thinking Can $\ln 5+\log _{2} 10$ be written as a single logarithm? Explain. See margin
64. In 2000 , there were about 300 million Internet users. That number is projected to grow to 1 billion in 2005. $y=300 e^{0.241 t}$
a. Let t represent the time, in years, since 2000 . Write a function of the form $y=a e^{c t}$ that models the expected growth in the population of Internet users.
b. In what year might there be 500 million Internet users? 2002
c. In what year might there be 1.5 billion Internet users? 2006
d. Solve your equation for t. d-e. See margin.
e. Writing Explain how you can use your equation from part (d) to verify your answers to parts (b) and (c).

65. Physics The function $T(t)=T_{r}+\left(T_{i}-T_{r}\right) e^{k t}$ models Newton's Law of Cooling. $T(t)$ is the temperature of a heated substance t minutes after it has been removed from a heat (or cooling) source. T_{i} is the substance's initial temperature, k is a constant for that substance, and T_{r} is room temperature. a. The initial surface temperature of a beef roast is $236^{\circ} \mathrm{F}$ and room temperature is $72^{\circ} \mathrm{F}$. If $k=-0.041$, how long will it take for this roast to cool to $100^{\circ} \mathrm{F}$?
b. Write and graph an equation that you can use to check your answer to part (a). Use your graph to complete the table below. a-b. See margin.

Temperature ($\left.{ }^{\circ} \mathrm{F}\right)$	225	200	175	150	125	100	75
Minutes Later	\square	\square	\square	\square	\square		\square
1.7							

66. Open-Ended Write a real-world problem that you can answer using Newton's Law of Cooling. Then answer it. Check students' work.

Test Prep

Multiple Choice
67. Which expression is equal to $3 \ln 4-5 \ln 2$? C
A. $\ln (-18)$
B. $\ln \left(\frac{6}{5}\right)$
C. $\ln 2$
D. $\ln 32$

474 Chapter 8 Exponential and Logarithmic Functions
65a. about 43 min
b. $t=\frac{-1}{0.041} \ln \left(\frac{T-72}{164}\right)$

68. What is the value of x if $17 e^{4 x}=85$? H
F. $\frac{5}{4}$
G. $\frac{\ln 85}{17 \cdot \ln 4}$
H. $\frac{\ln 5}{4}$
J. $\frac{\ln 85-\ln 17}{\ln 4}$
69. An investment of $\$ 750$ will be worth $\$ 1500$ after 12 years of continuous compounding at a fixed interest rate. What is that interest rate? B
A. 2.00%
B. 5.78%
C. 6.93%
D. 200%

Extended Response
70. The table shows the values of an investment after the given number of years of continuously compounded interest.

Years	0	1	2	3	4
Value	$\$ 500.00$	$\$ 541.64$	$\$ 586.76$	$\$ 635.62$	$\$ 688.56$

a. What is the rate of interest? a-c. See margin.
b. Write an equation to model the growth of the investment.
c. To the nearest year, when will the investment be worth $\$ 1800$?

Mixed Review

Lesson 8-5

Solve each equation.

71. $3^{2 x}=65614$
72. $7^{x}-2=2522.846$
73. $25^{2 x+1}=1440.272$
74. $\log 3 x=43333 . \overline{3}$
75. $\log 5 x+3=3.71 .002$
76. $\log 9-\log x+1=6$

$$
9.0 \times 10^{-5}
$$

Lesson 7-7 Find the inverse of each function. Is the inverse a function? 77-79. See margin.

$$
\text { 77. } y=5 x+7
$$

$$
\text { 78. } y=2 x^{3}+10
$$

$$
\text { 79. } y=-x^{2}+5
$$

Lesson 6-7 80. The Nut Shop carries 30 different types of nuts. The shop special is the Triple Play, a made-to-order mixture of any three different types of nuts. How many different Triple Plays are possible? 4060 possible combinations

Test Prep

Resources

For additional practice with a variety of test item formats:

- Standardized Test Prep, p. 483
- Test-Taking Strategies, p. 478
- Test-Taking Strategies with Transparencies
70.[4] a. 8%
b. $A=P e^{r t}=$ $500 e^{0.08 t}$
c. $1800=500 e^{0.08 t}$

$$
3.6=e^{0.08 t}
$$

In $3.6=0.08 t$ $\frac{\ln 3.6}{0.08}=t$
$16 \approx t$
about 16 years
[3] correct model, computation error in (b) or (c)
[2] incorrect model, solved correctly
[1] correct model, but without work shown in (c)
77. $y=\frac{x-7}{5}$; yes
78. $y=\sqrt[3]{\frac{x-10}{2}}$; yes
79. $y= \pm \sqrt{5-x}$; no

