Common Errors - Algebra

Each of the "common errors" shown below first demonstrates an incorrect use of algebra. Comments are made regarding why this is incorrect.

1. $\sqrt{9}= \pm 3$ ERROR Use of the radical

1a. The radical is by definition the positive square root. Thus $\sqrt{9}=+3$ and NOT -3
1b. If there is a variable under the radical, absolute value must be used to guarantee a positive result.
Therefore, $\sqrt{x^{2}}=|x|$ and $\sqrt{(x-2)^{2}}=|x-2|$
2. $x^{2}=9 \rightarrow x=3$ ERROR Two roots

2a. If $x^{2}=9$, then $x= \pm 3$. It is true that $x=3$ is one solution. Always use both +3 and -3 as solutions.
2b. The complete solution is $\sqrt{x^{2}}=\sqrt{9} \rightarrow|x|=3 \rightarrow\left\{\begin{array}{l}x=3 \\ x=-3\end{array}\right.$ because $\sqrt{x^{2}}=|x|$. (See 1b above)
OR change $x^{2}=9$ to $x^{2}-9=0=(x+3)(x-3)$ and see the two answers ± 3 more clearly.
3. $(a+b)^{2}=a^{2}+b^{2} \quad$ ERROR Squaring two terms

3a. This should be $(a+b)^{2}=a^{2}+2 a b+b^{2}$. Similarly, $(a-b)^{2}=a^{2}-2 a b+b^{2}$.
4. $\sqrt{a^{2}+b^{2}}=\sqrt{a^{2}}+\sqrt{b^{2}}=a+b \quad$ ERROR The square root of two terms

4a. $\sqrt{a^{2}+b^{2}}$ cannot be simplified. Proof this is wrong: Let $a=1$ and $b=2$ and check $\sqrt{1^{2}+2^{2}} \neq 1+2$

$$
\sqrt{5} \neq 3
$$

5. $\frac{1}{a+b}=\frac{1}{a}+\frac{1}{b} \quad$ ERROR \quad There is ONE denominator

5a. $\frac{1}{a+b}$ cannot be simplified. Proof that this is wrong: Let $a=1$ and $b=2$ and check $\begin{array}{r}\frac{1}{1+2} \neq \frac{1}{1}+\frac{1}{2} \\ \frac{1}{3} \neq 1+\frac{1}{2}\end{array}$

6. ERROR Be careful when "cancelling"

$$
\frac{3 x+y}{x^{2}}=\frac{3+y}{x} \text { or } \frac{10 x-13}{25}=\frac{2 x-13}{5} \text { or } \frac{(x-2) \cdot 4 x^{2}-3 x}{(x-2)^{2}}=\frac{4 x^{2}-3 x}{(x-2)}
$$

6a. None of these expressions can be simplified as written. The common errors are:

$$
\frac{3 \not x+y}{x^{2}}=\frac{3+y}{x} \text { or } \frac{10 x-13}{25}=\frac{2 x-13}{5} \text { or } \frac{(x-2) \cdot 4 x^{2}-3 x}{(x-2)^{2}}=\frac{4 x^{2}-3 x}{(x-2)}
$$

6b. $\frac{4 x-3 x y}{2 x^{7}}=\frac{x(4-3 y)}{2 x^{7}}=\frac{4-3 y}{2 x^{6}}$ and canceling works because the numerator can be factored. The 4 and the 2 can NOT be cancelled because a 2 can NOT be factored in the numerator.
7. The ZERO product property

Solve for x :
$x(x-2)=1$
$x=1$ or $x-2=1$
$x=3$

ERROR

NOTE: This is incorrect because the right hand side of the equation is not zero, and the factors x and $(x-2)$ have been set equal to that non-zero number, i.e., 1.

7a. The zero product property states that if $a b=0$ then either $a=0$ or $b=0$. This property is applicable only if the right hand side of the equation is zero.
7b. The correct solution is found by multiplying $\begin{aligned} & x(x-2)=x^{2}-2 x=1 \\ & \text { Then } x^{2}-2 x-1=0\end{aligned}$
Try to factor, but since this will not factor nicely, use the quadratic formula to solve for x.
8. Pulling a negative number out of an absolute value: $|-2(x+3)|=-2|x+3| \quad$ ERROR

8a. This would mean that an absolute value expression on the left, which must be positive or 0 , is equal to an expression which is negative (except when $x=-3$).

8b. It has to be done like this: $|-2(x+3)|=2|x+3|$.
9. (i) $3(2 x-7)^{4}=(6 x-21)^{4}$ or (ii) $5 \sqrt{2 x-3}=\sqrt{10 x-15}$ ERROR Distributive Property

9a. Proof that this is wrong: Let $x=4$. (i) $3(2 x-7)^{4}=3(1)^{4}=3 \neq(24-21)^{4}=81$.

$$
\text { Let } x=2 \text {. (ii) } 5 \sqrt{2 x-3}=5 \sqrt{1}=5 \neq \sqrt{20-15}=\sqrt{5} \text {. }
$$

9b. Do NOT distribute a in $a(b x+c)^{\text {exp }}$ if the expression in parentheses involves an exponent other than 1.
10. $\left(x^{2}\right)^{3}=x^{5} \quad$ ERROR Using more than one exponent

10a. $\left(x^{2}\right)^{3}$ means to use the x^{2} three times as a factor: $x^{2} \cdot x^{2} \cdot x^{2}=x^{6}$. There are a total of six x 's because x^{2} has been used three times. To simplify $\left(x^{2}\right)^{3}$, multiply the exponents.

10b. It is correct that $x^{2} \cdot x^{3}=x^{5}$ and the exponents can be added when x^{2} and x^{3} are multiplied.
11. $\log _{b}(x+y)=\log _{b}(x)+\log _{b}(y) \quad$ ERROR Adding logarithms

11a. Proof that this is wrong: let $b=10, x=10$ and $y=100$; then $\log _{10}(x)=1$ and $\log _{10}(y)=2$ $\log _{10}(x)+\log _{10}(y)=3$ but $\log _{10}(x+y)=\log _{10}(110) \approx 2.04$

11b. $\log _{10}(10)=1$ means that the exponent of 10 is $1 ; \log _{10}(100)=2$ means that the exponent of 10 is 2 . It is true that $\log _{b}(x \cdot y)=\log _{b}(x)+\log _{b}(y)$ because exponents are added when the quantities are multiplied (see 10b above).
12. $\frac{\log _{b}(x)}{\log _{b}(y)}=\log _{b}\left(\frac{x}{y}\right) \quad$ ERROR \quad Division and logarithms

12a. Proof that this is wrong: let $b=10, x=100$, and $y=1000$; then $\log _{b}(x)=2$ and $\log _{b}(y)=3$
$\frac{\log _{b}(x)}{\log _{b}(y)}=\frac{\log _{10}(100)}{\log _{10}(1000)}=\frac{2}{3}$ but $\log _{10}\left(\frac{x}{y}\right)=\log _{10}\left(\frac{100}{1000}\right)=\log _{10}\left(10^{-1}\right)=-1$
12b. It is true that $\log _{b}\left(\frac{x}{y}\right)=\log _{b}(x)-\log _{b}(y)$ because exponents are subtracted when the quantities are divided. (Example: $\left.\frac{x^{7}}{x^{5}}=x^{7-5}=x^{2}\right)$
13. $\frac{\log (3 a)}{\log (2 a)}=\frac{\log (3 \not \subset)}{\log (2 \not \varnothing)}=\log \left(\frac{3}{2}\right) \quad$ ERROR Canceling and logarithms

13a. Proof that this is wrong: Let $x=1$. Then $\frac{\log (3 x)}{\log (2 x)}=\frac{\log (3)}{\log (2)} \approx \frac{0.4771}{0.3010} \approx 1.585$ but $\log \left(\frac{3}{2}\right) \approx 0.1761$
There is no way to simplify the expression $\frac{\log (3 x)}{\log (2 x)}$ by canceling.

