PROPERTIES OF LOGARITHMIC FUNCTIONS

EXPONENTIAL FUNCTIONS

An exponential function is a function of the form $f(x)=b^{x}$, where $\mathrm{b}>0$ and x is any real number. (Note that $f(x)=x^{2}$ is NOT an exponential function.)

LOGARITHMIC FUNCTIONS

$\log _{b} x=y$ means that $x=b^{y}$ where $x>0, b>0, b \neq 1$

Think: Raise b to the power of y to obtain x, y is the exponent.

The key thing to remember about logarithms is that the logarithm is an exponent!
The rules of exponents apply to these and make simplifying logarithms easier.
Example: $\log _{10} 100=2$, since $100=10^{2}$.
$\log _{10} x$ is often written as just $\log x$, and is called the COMMON logarithm.
$\log _{e} x$ is often written as $\ln x$, and is called the NATURAL logarithm (note: $e \approx 2.718281828459 \ldots$).

PROPERTIES OF LOGARITHMS

EXAMPLES

1. $\log _{b} M N=\log _{b} M+\log _{b} N \quad \log 50+\log 2=\log 100=2$

Think: Multiply two numbers with the same base, add the exponents.
2. $\log _{b} \frac{M}{N}=\log _{b} M-\log _{b} N \quad \log _{8} 56-\log _{8} 7=\log _{8}\left(\frac{56}{7}\right)=\log _{8} 8=1$

Think: Divide two numbers with the same base, subtract the exponents.
3. $\log _{b} M^{P}=P \log _{b} M \quad \log 100^{3}=3 \cdot \log 100=3 \cdot 2=6$

Think: Raise an exponential expression to a power and multiply the exponents together.
$\log _{b} b^{x}=x$
$\log _{b} 1=0 \quad$ (in exponential form, $b^{0}=1$)
$\ln 1=0$
$\log _{b} b=1$
$\log _{10} 10=1$
$\ln e=1$
$\log _{b} b^{x}=x$
$\log _{10} 10^{x}=x$
$\ln e^{x}=x$
$b^{\log _{b} x}=x \quad$ Notice that we could substitute $y=\log _{b} x$ into the expression on the left to form b^{y}. Simply re-write the equation $y=\log _{b} x$ in exponential form as $x=b^{y}$. Therefore, $b^{\log _{b} x}=b^{y}=x . \quad$ Ex: $e^{\ln 26}=26$

CHANGE OF BASE FORMULA

$\log _{b} N=\frac{\log _{a} N}{\log _{a} b}$, for any positive base a.

$$
\log _{12} 5=\frac{\log 5}{\log 12} \approx \frac{0.698970}{1.079181} \approx 0.6476854
$$

This means you can use a regular scientific calculator to evaluate logs for any base.

Practice Problems contributed by Sarah Leyden, typed solutions by Scott Fallstrom Solve for x (do not use a calculator).

1. $\log _{9}\left(x^{2}-10\right)=1$
2. $\log _{3} 3^{2 x+1}=15$
3. $\log _{x} 8=3$
4. $\log _{5} x=2$
5. $\log _{5}\left(x^{2}-7 x+7\right)=0$
6. $\log _{3} 27^{x}=4.5$
7. $\log _{x} 8=-\frac{3}{2}$
8. $\log _{6} x+\log _{6}(x-1)=1$
9. $\log _{2} x^{1 / 2}+\log _{2}\left(\frac{1}{x}\right)=3$
10. $\log _{2} x^{2}-\log _{2}(3 x+8)=1$
11. $(1 / 2) \log _{3} x-(1 / 3) \log _{3} x^{2}=1$

Solve for x, use your calculator (if needed) for an approximation of x in decimal form.
12. $7^{x}=54$
13. $\log _{10} x=17$
14. $5^{x}=9 \cdot 4^{x}$
15. $10^{x}=e$
16. $e^{-x}=1.7$
17. $\ln (\ln x)=1.013$
18. $8^{x}=9^{x}$
19. $10^{x+1}=e^{4}$
20. $\log _{x} 10=-1.54$

Solutions to the Practice Problems on Logarithms:

1. $\log _{9}\left(x^{2}-10\right)=1 \Rightarrow 9^{1}=x^{2}-10 \Rightarrow x^{2}=19 \Rightarrow x= \pm \sqrt{19}$
2. $\log _{3} 3^{2 x+1}=15 \Rightarrow 3^{15}=3^{2 x+1} \Rightarrow 2 x+1=15 \Rightarrow 2 x=14 \Rightarrow x=7$
3. $\log _{x} 8=3 \Rightarrow x^{3}=8 \Rightarrow x=2$
4. $\log _{5} x=2 \Rightarrow 5^{2}=x \Rightarrow x=25$
5. $\log _{5}\left(x^{2}-7 x+7\right)=0 \Rightarrow 5^{0}=x^{2}-7 x+7 \Rightarrow 0=x^{2}-7 x+6 \Rightarrow 0=(x-6)(x-1) \Rightarrow x=6$ or $x=1$
6. $\log _{3} 27^{x}=4.5 \Rightarrow \log _{3}\left(3^{3}\right)^{x}=4.5 \Rightarrow \log _{3} 3^{3 x}=4.5 \Rightarrow 3 x=4.5 \Rightarrow x=1.5$
7. $\log _{x} 8=-\frac{3}{2} \Rightarrow x^{-3 / 2}=8 \Rightarrow x=8^{-2 / 3} \Rightarrow x=\frac{1}{4}$
$\log _{6} x+\log _{6}(x-1)=1 \Rightarrow \log _{6}\left(x^{2}-x\right)=1 \Rightarrow x^{2}-x=6 \Rightarrow x^{2}-x-6=0 \Rightarrow$
8. $(x-3)(x+2)=0 \Rightarrow x=3$ or $x=-2$. Note: $x=-2$ is an extraneous solution, which solves only the new equation. $x=3$ is the only solution to the original equation.
9. $\log _{2} x^{1 / 2}+\log _{2}\left(\frac{1}{x}\right)=3 \Rightarrow \log _{2}\left(\frac{x^{1 / 2}}{x}\right)=3 \Rightarrow \log _{2} x^{-1 / 2}=3 \Rightarrow 2^{3}=x^{-1 / 2} \Rightarrow x=\left(2^{3}\right)^{-2}=\frac{1}{64}$ $\log _{2} x^{2}-\log _{2}(3 x+8)=1 \Rightarrow \log _{2}\left(\frac{x^{2}}{3 x+8}\right)=1 \Rightarrow \frac{x^{2}}{3 x+8}=2 \Rightarrow x^{2}=6 x+16 \Rightarrow$
$x^{2}-6 x-16=0 \Rightarrow(x-8)(x+2)=0 \Rightarrow x=8$ or $x=-2$
10.

$(1 / 2) \log _{3} x-(1 / 3) \log _{3} x^{2}=1 \Rightarrow \log _{3} x^{1 / 2}-\log _{3} x^{2 / 3}=1 \Rightarrow \log _{3}\left(\frac{x^{1 / 2}}{x^{2 / 3}}\right)=1 \Rightarrow x^{1 / 2-2 / 3}=3 \Rightarrow$
$x^{-1 / 6}=3 \Rightarrow x=3^{-6}=\frac{1}{729}$
12. $7^{x}=54 \Rightarrow x=\log _{7} 54 \Rightarrow x=\frac{\log 54}{\log 7} \approx 2.0499$
13. $\log _{10} x=17 \Rightarrow x=10^{17}$
14. $5^{x}=9 \cdot 4^{x} \Rightarrow \frac{5^{x}}{4^{x}}=9 \Rightarrow\left(\frac{5}{4}\right)^{x}=9 \Rightarrow x=\log _{\frac{5}{4}} 9 \Rightarrow x \approx 9.8467$
15. $10^{x}=e \Rightarrow x=\log _{10} e \Rightarrow x=\log e \approx 0.4343$
16. $e^{-x}=1.7 \Rightarrow-x=\ln 1.7 \Rightarrow x=-\ln 1.7 \approx-0.5306$
17. $\ln (\ln x)=1.013 \Rightarrow \ln x=e^{1.013} \Rightarrow x=e^{e^{1.013}} \approx 15.7030$
18. $8^{x}=9^{x} \Rightarrow 1=\left(\frac{9}{8}\right)^{x} \Rightarrow x=\log _{\frac{9}{8}} 1 \Rightarrow x=0$
19. $10^{x+1}=e^{4} \Rightarrow x+1=\log e^{4} \Rightarrow x=\log e^{4}-1=\log e^{4}-\log 10 \Rightarrow x=\log \left(\frac{e^{4}}{10}\right) \approx 0.7372$
20. $\log _{x} 10=-1.54 \Rightarrow x^{-1.54}=10 \Rightarrow x=10^{-1 / 54} \approx 0.2242$

